ABSTRACT

FLEMING III, JOHN T. Characteristic Methods for Solving the Particle Transport Equa-
tion in 1-D Spherical Geometry. (Under the direction of Dmitriy Y. Anistratov.)

A family of numerical methods for solving the particle transport equation in 1-D
spherical geometry are developed using the method of characteristics. The development of
these methods is driven by a desire to: (i) provide solutions to transport problems which
cannot otherwise be determined using analytic techniques (ii) provide comparative solutions
to test methods developed for other curvilinear geometries and (iii) develop methods for
RZ geometry. Problems that are of increasing importance to the transport community are
those that contain subdomains which are considered optically thick and diffusive. These
problems result in high computational costs and grid refinement that make realistic models
impossible to solve. As a result, we look to develop vertex-based characteristic methods that
can reproduce these diffusive solutions with spatial grids that do not resolve boundary layers.
This research will allow for continued development of advanced conservative characteristic
methods with better properties for R-Z geometries.

The transport methods derived here are based on a change of coordinates that
removes the angular derivative term in the differential operator resulting in a differential
equation which can be discretized using methods similar to those found in 1-D slab geometry.
In this study, we present a family of characteristic methods; Vladimirov’s method of charac-
teristics, a conservative long characteristic method, two locally conservative short character-
istic methods, a linear long characteristic method, and an explicit slope long characteristic
method. The numerical results presented in this thesis demonstrate the performance of each

method, and the asymptotic diffusion limit analysis shows a method’s behavior for diffusive
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problems. We found that the linear and explicit slope long characteristic methods generated
numerical solutions which are well behaved in diffusive problems. Also, we analyzed several
of these methods using asymptotic diffusion limit analysis and found that the linear long

characteristic method limits to a discretized version of the diffusion equation.
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Chapter 1

INTRODUCTION

1.1 Overview

Many science and engineering applications utilize processes described by the par-
ticle transport (linear Boltzmann) equation, such as radiation shielding, reactor physics,
and astrophysics calculations. These applications analyze realistic phenomena that have a
degree of variability and require modeling of complex geometries such that analytic meth-
ods fail to provide solutions to current problems. Properly simulating these processes has
provided the motivation to develop numerical techniques that can efficiently solve particle
transport problems. Some radiative transport problems have material properties and mesh
sizes that are considered “optically thin”, methods designed for these problem types address
solution behaviors that can be analyzed using truncation error analysis; i.e. as the size of
a cell tends towards zero. This study, however, will address problems that are considered

“optically thick” and diffusive.
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Diffusive problems have been a constant focus of computational physicists for
several decades, with the intent of developing numerical methods that, accurately and
efficiently, represent the interaction of radiation with matter in sophisticated multiphysics
models. These systems typically contain regions that have a large number of interactions
per unit path length with few particles removed due to these interactions. Problems of
this type result in high computation costs when using standard approaches, due to the grid
refinement necessary to generate an acceptable solution. Therefore, current research utilizes
diffusion limit analysis to determine the behavior of a method for problems where the spatial
cells are considered optically thick and diffusive. This thesis looks at the development and
analysis of methods for 1-D spherical geometry which will produce accurate solutions in

diffusive regions.

1.2 The Boltzmann Transport Equation

This work begins with a description of the linear Boltzmann equation. The Boltz-
mann equation has been studied for over a century. Originally formulated to describe the
dynamics of an ideal gas, it was later applied to the study of radiation transfer in astro-
physics problems and particle transport within nuclear reactors. The increasing sophistica-
tion of model problems and advent of computer technology eventually shifted research from
analytic techniques to more numerical based methods.

The transport equation in its most general form is a function of seven independent

variables: 3 spatial, 2 angular, time, and energy. This thesis considers the steady-state,
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one-group particle transport equation with isotropic-scattering

Q- V%b(ﬁ Q) + Ut(f"w(ﬁ Q) = _O-S(F) ¢(F, Q/)dQ/ + _Q(’F)v (11)
47T A 47T

rel, nedl, (1.2)

U (7, D) |reor = ¥""(7, D), Q-7 <0, (1.3)

where w[%] is the angular flux, o;[cm™!] is the total cross section, os[em ™! is the

#ofparticles

scattering cross section, and ¢ p—

| represents the external source.

These are realistic simplification. First, energy dependent problems can be looked
at as a series of coupled energy independent problems, where each energy group is coupled
though the scattering term on the right hand side (RHS) of the transport equation. Second,

time dependence adds a level of complexity which requires discretization techniques that

are independent of the spatial and angular methods presented.

1.2.1 Curvilinear Geometries

In more compact form, Eq. (1.1) can be written in terms of linear operators

L= Sp+Q, (14)
1 - AN 40O/
S = EUS(F) 4W¢(T, 2)dQY', (1.6)

where L is the streaming and removal operator, S is the scattering operator, and Q is the
external source. For the purpose of explaining different geometries, L is the operator of

interest, specifically, the streaming term, Q- ﬁw. In this study, the 1-D spherical geometry
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is considered. In these problems, we express the particle direction of motion with respect

to its radius vector, 7 such that

K

p=CQ-7=cos, = (1.7)

!

K
Now, one can see from Eq. (1.7) that as a particle travels along direction Q the value of

the direction cosine, p, will continue to change, which results in an angular derivative term

in the streaming operator

dy  Opdr  ddp

ds ~ drds " opds’ 49
where
% =cosf = p, (1.9)
Z—g = d(;();ﬁ% = sinHSiia , (1.10)
Ccil_/: _ @ (1.11)

Substituting Eq. (1.9) and Eq. (1.11) into Eq. (1.8) yields the following streaming operator

o ov (1= p?) 0w

as  Por r  Ou (1.12)

and substituting Eq. (1.12) into Eq. (1.1) gives the 1-D, one-group, steady-state, spherical

geometry transport equation

o 1—u?)d 1 ! 1
ua—qf Gl T“ )£ +ou ()i (r, 1) = 504(r) 9 Dy )du’ + Sa(r) (1.13)
0<r<R, —-1<p<I1, (1.14)
(R, 1) =™ (), p<0. (1.15)

Note that the equation (1.13) can be written in the following divergence form:

10 o (1—pu?

1
0) +ayotr) = yon(r) [ ol + Jalr). (110

2
2, )+ En (
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1.3 Asymptotic Diffusion Analysis

The linear Boltzmann equation can behave differently based on the physical con-
ditions of a system. Because transport problems can posses multiple regions with varying
material properties, it is important to understand how the transport equation behaves for
a given set of parameters. One such behavior, which has importance in many radiative
transfer applications, is how the transport equation limits to the diffusion equation as the
system becomes large compared to a particle’s mean free path (optically thick) with very
little absorption and source. The asymptotic diffusion limit analysis is presented here for
the continuous case, and is also used later as a tool that will help to determine accuracy of
a numerical method [11, 16]. The analysis is presented for the 1-D spherical geometry case

with isotropic scattering

) 1—p2)0 1 ! 1
pSE + Ao s wtr) = 3ot [ bl +3a), (a7
0<r<R,-1<p<l, (1.18)
(R, ) = ™ (1), p<0. (1.19)

Now, a dimensionless parameter, ¢, is introduced such that as ¢ — 0 the system

becomes more optically thick while the source and absorption cross section are reduced.

oy(r) = 6’? : (1.20)
oa(r) = eb4(r), (1.21)
q(r) =&q(r), (1.22)
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where 64(r), 65(r), ¢(r) are O(1). Substituting Eq. (1.20), (1.21), (1.22) into Eq.(1.17)

yields the following scaled transport equation

(L—p?) oy &u(r) _1
r o + 71/1(7“, ) = 5

&t T N 1 / ’ ~
e [ﬁ - eaam} [ vt + Jeitr). (12

Now we introduce the ansatz
Ylrp) = W (r, pe™, (1.24)
m=0

substitute the expansion (1.24) into Eq. (1.23) and equate coefficients for different powers

of e. The following results are obtained for €, !, 2 respectively

0O p) = 5600). (1.23)
W) = Loy - _# A0
W) = 5000 - s =a (), (1.26)
) 1 V) 2d 1 dp®
Ut(r) [¢(2)(T’ IU’) B §¢(2)(T):| - _g ir (T) + %%&t(’r) (s"' (7‘)+
1 dp© pe do® G oy, Lo
2r6,(r) dr T 2roy(r) dr (r) - 7¢) (r)+ §q(fr),
(1.27)
where
1
¢(m)(7«):/ ¢(m)(r,u')du’. (1.28)
—1

Integrating Eq. (1.27) over all values of p results in the following solvability condition

1 d( r2 de(r)

Cr2dr \36¢(r) dr

) +6a(r)dO(r) = d(r) (1.20)

If this condition is not satisfied then no solution of Eq. (1.27) exists. Now, we multiply Eq.

(1.29) by ¢ and use Eq. (1.20), (1.21), and (1.22) to obtain the diffusion equation for $(*)

1 d( r?2 de©(r)

oo (MO (r) = q(r) . ‘
3o¢(r) dr )+ a(r)¢™(r) = q(r) (1.30)
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This analysis shows that the leading order angular flux is isotropic and satisfies the conven-

tional diffusion equation for the interior of the diffusive region with boundary condition

1
OB =2 [ Wil Do (1.31)
Here, W (u), related to the Chandrasekhar’s X function [4], satisfies

3
W () = 0.956p + 1.565u% 4 .0035 ~ 1 + §u2 . (1.32)

1.4 Brief History

There have been many notable advancements in the development of numerical tech-
niques for curvilinear geometries, specificly 1-D spherical geometries. There are two main
groups of methods that have been considered, discrete ordinate methods, which rely on an
independent discretization of the angular and spatial variables, and characteristic methods,
which solve the transport equation along a characteristic path, aligned in a particular direc-
tion. The later consists of two types, short and long characteristics. Short characteristics
are path lengths that span the length of an individual cell where long characteristics span
the entire spatial grid.

Most method development in 1-D spherical geometry have been in discrete ordi-
nates. Its simplicity in Cartesian geometries is lost in curvilinear geometries due to the
angular derivative term in the steaming operator of the transport equation. Now, adequate
differencing techniques must be derived for both the angular and spatial variables. One
of the existing angular differencing techniques is Weighted Diamond Differencing (WDD).

Morel and Montry [12] found that, combined with starting direction flux values, WDD
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produces accurate solutions in diffusive type problems given the appropriate spatial dis-
cretization. Later, several angular differencing approximations were analyzed in [19]. The
Py _1-Equivalent S, angular discretization was proposed in [21]. Note that the Py ap-
proximation yields accurate results for optically thick diffusive problems [13]. A notable
advancement in spatial discretization for 1-D spherical geometry was the asymptotic anal-
ysis of ”simple” corner balance and ”fully-lumped” discontinuous finite element methods
[17]. Both were found to be accurate in the thick diffusion limit.

Vladimirov [2, 3] proposed methods of long characteristics (VMOC) for 1-D spher-
ical geometry. He posed a set of vertex-based methods that utilized a characteristic form
of the 1-D spherical geometry transport equation. He treated the total source term with
either linear or parabolic interpolation. These are not conservative. The idea of a conserva-
tive version of VMOC was proposed in [14]. The method of characteristic tubes [8] expand
on VMOC by solving the transport equation along a volume average characteristic or a
”characteristic tube”. Here, each tube is defined by the volume between the characteristics.
This produced a method that retained the favorable qualities of VMOC but also preserved
the particle balance in a cell resulting in increased solution accuracy. Askew [10] also con-
sidered a version of the method of tubes with step characteristics and applied it to general
geometry. These techniques provide a basis for developing characteristic methods in 1-D
spherical geometry and some have been shown to be accurate for non-diffusive problems.
Recently, two moment-based versions of the method of tubes were developed [23], step and
linear characteristics, and analyzed for accuracy in diffusive problems. The analysis found

that step characteristics behaved poorly in diffusive regions, while linear characteristics did
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meet the asymptotic diffusion limit.

1.5 Thesis Organization

The goal of this research is to develop a family of vertex-based characteristic meth-
ods for transport problems in 1-D spherical geometry that produce accurate solutions in
the asymptotic diffusion limit. The transport methods derived here are based on trans-
formation of the spherical geometry transport equation to a coordinate system based on
the direction along characteristics and the perpendicular one, which results in the space
where characteristics are straight lines. This transformation yields a first order differential
equation that can be discretized using methods similar to those used in 1-D slab geometry.

Chapter 2 considers the first vertex-based characteristic discretization schemes
developed by Vladimirov [2, 3]. Here we describe the transformation of the coordinate
systems. Then we derive VMOC with linear and parabolic interpolation of the total source
term and perform an asymptotic analysis of each method. These are non-conservative
methods with no expectations of meeting the asymptotic diffusion limit. They did, however,
provide a basis for developing the new characteristic methods described in this thesis.

In chapters 3 and 4, we derive the conservative versions of the methods of long
and locally conservative short characteristics, linear long characteristic method, and the
explicit slope long characteristic method and perform the asymptotic analysis for several of
these methods. We have tested each of these methods using a set of problems which check
solution behavior for both optically thin and diffusive problems. These numerical results

are given in Chapter 5. We conclude with a discussion in Chapter 6.
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Chapter 2

VLADIMIROV’S METHOD OF

LONG CHARACTERISTICS

This chapter discusses characteristic methods developed for the treatment of spa-
tially symmetric spheres and provides the basis for the family of methods presented in
this thesis. The first of these methods was developed by V. Vladimirov [2, 3]. They uti-
lize a coordinate system based on the characteristic track and its perpendicular direction.
Transformation from the (7, u) rectangular coordinates to this natural system removes the
angular derivative in the differential operator term of Eq. (1.13) and reduces the spherical
geometry transport equation to a first order differential equation, which can then be solved
for a general solution along the characteristic path. This technique is used for the methods

derived in the following sections.

11
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2.1 Transformation of 1D Spherical Transport Equation to

Local Orthogonal Coordinates

Consider the transport equation for 1D spherical geometry with isotropic scattering

given by Eq. (1.13)

oy  (1- Nz) oY 1 ! NI
Pyt o +au(r)g(r, p) = 5os(r) _11/)(7",# Jdu' + 54(r). (2.1)
0<r<R, -1<p<1,
with an incident flux at »r = R
(R, p) = ™ () for p < 0. (2.2)

Here ¢ (r,u) is the angular flux, o, and o, are the total and scattering cross sections,
respectively, and ¢ is an external source. Now, we begin the change of coordinates by

defining the follow independent variables [1, 2, 3]

Differentiate Eq. (2.3) with respect to r and

9z _ Oz _ % _ 1 — 2 Oy _ _—rp (2.4)
ar 1 8,u_r’ or . o J1— 2
From Eq. (2.3) and Eq. (2.4) we can define the following
oY Opdx  OYdy O 0
E_axdr—i_aydr_uax—i_ : 'u(?y’ (25)
oY  OYdr  Oypdy O —ry Oy

O~ vdn oydn "0 T T gm0y
12
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Substituting Eq. (2.5) and Eq. (2.6) into the first two terms on the left hand side (LHS) of

Eq. (2.1) yields the following streaming operator

o o\ (1—p?) [ 0¥ —rp OY\ _ 0Y(z,y)
H<”£+m8_y)+7(ra+—1_—/ﬁ8_y>_T' (27)

The final result is the 1D spherical geometry transport equation in local orthogonal coor-

dinate system

WD) | o (VT PWy) = Lo VP T PN T )+ LaSP ), (28

with an incident flux at »r = R
V(=R —y2y) =9"(y), 0<y<R. (2.9)

We now solve the first order differential equation for a general solution between z, and =z

for a given y

Y@, y) = (e, y)e Joo " 4 / Q22+ y2)e o orde” gy (2.10)

Zo

where

QWATH ) = Lo (VTS ) +pa(VaE ). (1)

2.2  Vladimirov’s Method of Long Characteristics(VMOCQC)

Now, we can generate the spatial grid used by VMOC shown in Figure. 2.2 by
dividing 7 into N intervals [rj /25 Th—1 /2] and forcing y;_1/ = r;_1/2. The resulting spatial

grid in (z,y) variables is given by

13
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Yietr
/ / / Yiie \E\
E E / I1/2: \rmlz\ i rk+1/2\
Krtinn Fictrinr2 Xarisrz Xir12i172 X
Figure 2.1: The characteristics in (z,y) coordinates.
(ixk—l/Q,i—l/Zin—l/Z), k:Za7N+17 L= 1)7N+]—a (212)

Lk-1/2,i-1/2 = \/7“,3_1/2 - 7"3_1/27 Yi—1/2 = Ti-1/2 - (2.13)

Using Eq. (2.3) and Eq. (2.12), we can define the spatially dependent angular mesh

HEk—1/2,i-1/2 = (2.14)
Evaluating Eq. (2.10) at & = —j_1/3,i-1/2, To = ~Tk+1/2,-1/2, and Yi_1/3 yields
(o =, e OtEATE i1/
k—1/2,i-1/2 = Yk+1/2,i-1/2¢
_ , (2.15)
Tk—1/2,i—1/2 5 (-t 4 )
“Tk+1/2,i—-1/2
¢Xr+1/2,i—1/2 = 1/1in(yi—1/2) ) (2.16)
k=N+1,..1
14
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Evaluating Eq. (2.10) at = Ty11/2,i—1/2, To = Tp—1/2,i—1/2, and y;_1 /5 yields

+ — ot —0t kATE ;12
Ver1/2,i-172 = Yi-1/2,i-1/2¢ Y

- _ (2.17)
LR 2 2 —0t k($k+1/2 i—1/2_x)
+ Q(y/x% + yi_l/Q)e , ’ dz ,
Tk—1/2,i—1/2
J’_ _ —_
¢i—1/2,z‘—1/2 = ¥i-1/2/i-1/2> (2.18)
k=14,.,.N+1,
for i=1,...N+1.
Here
Q:Z’k_—1/2,i—1/2 = @/)(—3%—1/2,1—1/27 y¢—1/2) ) (2.19)
1/1;_1/271-_1/2 = ¢($k—1/2,i—1/2a yi—1/2) ) (2.20)
1
QW+ ) = 5 (Vo + 20V + ) + VP D)) (22D)
A301~c,z‘—1/2 = Tkt1/2,i-1/2 — Lhk—1/2,i—1/2 - (2.22)
The integrals in Eqgs. (2.15) and (2.17) are approximated in the following way:
—Tg—1/2,i—1/2

/ Q( [22 4+ yi2_1/2)60't,k(w+xk—1/2,i—1/2)d$
—Tp41/2,i—1/2 (2.23)

= Gpic12Qk—1/2i-1/2 + B i1 9Qkt1/25-1/2

Tht1/2im1/2 2 2 —o k(g ; )

/ Q(y/z? + yi_l/z)e RATR+1/2,0-1/278)

Tp—1/2,i—1/2 (2.24)

= P]::i_l/ng—l/Zi—l/Q + G]i:i_l/QQk-‘rl/Q,i—l/Q ;

where

Qr—1/24-1/2 = Q(\/xi_l/g + yi2_1/2) .
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The first condition to determine the coefficients P,;tl._l /2 and Gfi_l /2 requires that Egs.

(2.23) and Egs. (2.24) are exact, if

Qr—1/2,i-1/2 = Qry1/2,i-172 = 1. (2.25)
This leads to
1
+ _ — oy kAT 4 +
Gk,i—1/2 = a(l — € Otk T, 1/2) — Pk,i—1/2 . (226)

In this case, Eqgs. (2.15) and (2.17) give rise to

- e ~Tk,i—1/2 - .
¢k—1/2,i—1/2 - '/’k+1/2,i—1/2e 2+ Pk,i—l/ZQk"rl/?ﬂ—l/?

1 (2.27)
+ [a(l — e—Tk,i—1/2) — Pk_,i—l/2:| Qk—l/?,i—1/2 ,
iy = ohF T Tkyi— =+
Uity = Uno1mio1s€ VA P Qu1jaica o 025)

1 —_ .
+ [a(l — e Thim1/2) — Pl;ti—l/z] Qhr1/2i-1/2

where
Thi-1/2 = Ot kAT i 1/2 -

Additional conditions are needed to determine the P,j[i_l /2 coefficients. Now, we consider

two variations for treating the total source in a cell, linear and parabolic interpolation.

2.2.1 VMOC with Linear Interpolation of the Total Source Term

To derive the method with linear interpolation of the total source with respect to

x, we impose the condition that Eq. (2.23) is exact for @ = z, then Eq. (2.23) becomes

—Tk—-1/2,i—1/2
/ 2eftk(@FT_1/2i-1/2) Jp —

“Tk41/2,i—1/2

(2.29)

1

_ o _
Tht1/2,i-1/2Fp ;10 T Tho1/2,i-1/2 oir (1 —e"™im12) = P ol
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and performing the integration

—Tp—-1/2,i—1/2
/ xeat,k(x+xk—1/2,i—1/2)dm —

—Tpy1/2,i-1/2 (2.30)

1 ( - I
—— | Thr1y2i-1j2 € TV — a0 1+ —— (e TRT2 = 1) )
Ot k / / / / at,k

)

Equating the RHS of Eq. (2.29) to the RHS of Eq. (2.30), and solving for Py i1yo Yields

1 1 — e Thi-1/2
hio1/2 = - —eT T2 ) (2.31)
A=1/ Otk Thi—1/2

Next, we impose a similar condition that Eq. (2.24) is exact for @ = z, then Eq. (2.24)

becomes
Th41/2,i—1/2
/ $e_‘7t,k(75k+1/2,i—1/2—$)da; —
Tk—1/2,i—1/2 (2 32)

1
+ —Thk,i— +
Th-1/2i-1/20 172 T Thy1/2i-1/2 a(l — e Thin2) — Pk,i—l/Q] ;

and performing the integration

Tk+1/2,i—1/2
xe—(’t,k(mk+1/2,i—1/2_m)dx —

Th—1/2,i-1/2 (2.33)
1

- <55k+1/2 i—1/2 € RV —mp qy951/0 + L(E_T’“’i_l/2 - 1)> :
Otk ’ ' Otk

) )

Equating the RHS of Eq. (2.32) to the RHS of Eq. (2.33), and solving for PI:_i—l/Q yields

— o Tki-1/
pr _ L (lzeme e Thi1/2 | (2.34)
ki=1/2 7 gy, Thi—1/2

and as a result we find that

P+

ki—1/2 Py

P (2.35)

Hereafter the method defined by Eqs. (2.27), (2.28), (2.31), and (2.35) is referred to as

VMOC with linear interpolation of the total source (VMOC-LI).
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2.2.2 VMOC with Parabolic Interpolation of the Total Source Term

To formulate the method with parabolic interpolation of the total source with

respect to z, we require that Eq. (2.23) is exact for Q = 2% and get

—Tp—-1/2,i—1/2
/ ' x2edt,k($+$k—1/2,z‘—1/2)da; —

“Tk41/2,i—1/2 (2.36)

1
2 - 2 — (1 — ¢ Tki-1/2) — P~
Tr1/2,i-1/2P0i-1/2 T Tho1/2,i-12 o k(l 2 2) Pk,i—1/2:| ;

and performing the integration gives

—Tp—-1/2,i—1/2
/ 226tk (T Te_1/2,i-1/2) Jop —

“Tk41/2,i—1/2 (2.37)

1

1
2 —Thk,i—1/2 2 —Thk,i—1/2
—— |z 10 € TR — Xy _{/9i 1/ + — (7R -1)) .
Ouk < k+1/24-1/2 k—1/2i—1/2 Ut,k( )

Now, equating the RHS of Eq. (2.36) to the RHS of Eq. (2.37), and solving for P, , /9

yields

_ . 1 2(Ut,k$k+1/2,i—1/2 — 1)(1 — e_Tk,i—l/Z)
Ri12 T gy o2, (2 . —z2 )
’ tk\"k+1/2i—1/2 k—1/2,i—1/2 (238)

4 e Thi-1/2 ( 2 — 1):| .
Ot k(Thy1/2,i-1/2 + Tho1/2,i-1/2)

Next, we impose a similar condition that Eq. (2.24) is exact for Q = 2, then Eq. (2.24)

becomes
Th41/2,i—1/2
/ $2€—Ut,k($k+1/2,z'—1/2—$)d$ -
Tp_ P —
k—1/2,i—1/2 (2.39)
1
2 + 2 = (1 — o~ Tki-1/2) _ PT
wk—l/2,i—l/2pk,i—l/2 t Tpy1/2,i-1/2 Utk(l € 2) Pk,i—1/2 )
and performing the integration gives
Tk41/2,i—1/2
/ xQe—Ut,k($k+1/2,i—1/2—x)dx —
Tk—1/2,i—1/2 (2 40)
_L 2 —Thi-1/2 _ p2 + L( —Tkyi—1/2 _ 1)
oy \RH1/2-1/2 € Lh—1/2,i—1/2 . € ‘
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Now, equating the RHS of Eq. (2.39) to the RHS of Eq. (2.40), and solving for P,", | /9
yields

+ _
Pk,i—1/2 =

1 2(0¢ kTpy1/2,i—172 — 1)(1 — e hiz1/2)
Otk

4 e Thi—1/2 < 2 — 1):| .
Otk (Thg1/2,i-1/2 T Th—1/2,i-1/2)

Hereafter the method defined by Eqs. (2.27), (2.28), (2.38), (2.41) is referred to as VMOC

o2 (x2 . — .
ixl k+1/2,i-1/2 k—1/2,z—1/2) (2.41)

with parabolic interpolation of the total source (VMOC-PI).

2.2.3 Quadratures

In both VMOC-LI and VMOC-PI, the scalar flux , ¢(r) (at r = r4_;/2), in the
scattering source term of Eq. (2.11) is calculated by means of integration of the cell-edge
angular flux, ¥_1/2;_i/2, using the local angular mesh at r = rj_y 5, namely, pg_1/2;_1/2,
i=1,..,k

0 1
¢k—1/2 = / T/Jk__l/z(ﬂ) d“ +/ 1/1;_1/2(#) dUa (2'42)

k HE—1/2,i4+1/2

Pr—1/2 = Z/

i=1 Y Hk—1/2,i—1/2

Hi—1/2,i— 1/2
Vi1 o (h du+2/ Uy () du. (2.43)

He—1/2,i+1/2

Using the trapezoid method, we get

Pr—1/2 = Z V_1/2,i—1/2Wk—1/2,i-1/2 +
i=1

(2.44)
_l’_
Z Vh_1/2,i—1/2Wk—1/2,i-1/2 >
i=1
where
1
Wg-1/2,1/2 = 5(%—1/2,1/2 - Mk—1/2,3/2) ) (2.45)
Wg—-1/2,i—1/2 = 5(/%—1/2,1'—3/2 - Mk—l/2,i+1/2) y 1=2,.,k—1,
Wg-1/2,k—1/2 — §(Hk—1/2,k—3/2 - Mk—l/z,k—l/z) .
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2.2.4 The Asymptotic Diffusion Analysis of VMOC

In this section, we perform an asymptotic diffusion analysis of the discretized
equations of the VMOC methods to determine if they limit to a correct discretized version
of the diffusion equation with appropriate boundary conditions. The analysis is similar to
the continuous analysis as outlined in Section 1.3, except here the discrete equations are
used. A detailed analysis is reproduced here, for VMOC-LI, with a summary of the major

differences and final result for VMOC-PI.

Linear Interpolation

Consider Egs. (2.27) and (2.28) in the following form:

¢I;—1/2,i—1/2 - ¢k_+1/2,i—1/2 + O-t»kAwk7i—1/2¢k_,i—1/2 =

(2.46)
1 _
§(Us,kq)k’i_1/2 +qr) Az 12
1/’lj+1 2,i—1/2 %:—1 2i-1/2 + Ut:kAmk»i—l/leji—l 2=
/2,i—1/ /2,i—1/ =1/ (2.47)
1
§(Us,kq);:7i_1/2 + k) ATy 172
where
wk_,i—l/2 = akvi—1/2¢1;+1/2,i—1/2 +(1- O‘lm'—1/2)¢1c_—1/2,z‘—1/2 ) (2.48)
wlj,i—l/2 = ak,i—l/ﬂ/’l;—l/z,z‘—l/z +(1- ak,i—l/2)¢l;+1/2,i—1/2 ) (2.49)
P12 = Pri-1/20k41/2 + (1= Bric1/2)Pe-1/2 5 (2.50)
‘I’Zi_l/g = Brii-1/20k-1/2 + (1 = Bri—1/2)Prs1/2 » (2.51)
1 e_Tk,i71/2
+ — _
Opi-1/2 = Toiis  (I—e i)’ (2.52)
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and for linear interpolation

+ _ Ut,k + 4+
Buiars = Ty him1/2 = i1y (2.53)

We define a small parameter ¢, introduce scaled cross sections and source

1
o = g6t7 Og = €04, q=E¢q, (2.54)

and consider the transport problem as ¢ — 0. Assume that the solution can be expanded

in power series of €

d}k 1/2,i-1/2 — ngwk 1/2,i-1/2 d’lu 12 = ngwkz 120 Pk = Zemd’gcm]
m=0
(2.55)

Note, if we introduce Eq. (2.54) into Eq. (2.52) and take the limit as ¢ — 0, a,fi_l/z can

be reduced to the following expression

_ Tk,i—1/2
+ . € € € e n
ar. ., =1lm | = - — = - +o(e") Vn, (2.56)
ki 1/2 e—0 (Tk,i—l/2 1— e k,161/2> Tk,i—1/2
where
Thi1/2 = Ot kATpi_1/2 - (2.57)

Now, we introduce the expansions (2.55) and weight (2.56) into Eqgs. (2.46) - (2.51) and

equate the coefficients at powers of €. This leads to the following sets of equations:

O(e71) equations

+[0] 1 400
U (2.58)
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O(1) equations

o 0 A (1] Lo ) _
Uy 1/2,i—1/2 d’k+1/2@ 12 T Thi-1/2 (%,i_l/g - E(I)iw‘—l/?) =0, (2.59)
+[0] +10] 1] 1 1] B
rt1y2,i-1/2 = Yro1y2,i-1/2 T Thiv1/2 (wkz 12~ §(I)k,i—1/2) =0, (2.60)
U = (2.61)
ki—1/2 — Yk—1/2,i—1/2" :
+o  _  +[0]
¢k,i—1/2 - ¢k+1/2,i—1/2 ’ (262)
0
(I)kz 12 = ¢£{:]1/2’ (2.63)
+[0 [0]
CDkz 1/2 — ¢k+1/2’ (264)
O(e) equations
1 —[0] —[0] —[1]
d’m 12 = i1/ <¢k+1/2,i—1/2 - %—1/2,@'—1/2) + 7’Z)k—1/2,i—1/2’ (2.65)
1 +[0] +[0]
1/),“ 1/2 = i1/2 (%—1/2,@'—1/2 ¢k+1/2z 1/2) -1-1/11~C 1/22 1/2° (2.66)
U 0] (0] 1]
CI)kz 1/2 — 172 <¢k+1/2 - ¢k_1/2> + ¢k—1/27 (2.67)
+[1] 1 [0 [0 1]
Prio1p = o172 <¢k—1/2 - d’k+1/2) + Ptz (2.68)
Note that from Eq. (2.44) we have
‘% 1/2 = Zdjk 1/2,i—1/2Wk—1/2,i— 1/2+Z¢k 1/2,i—1/2Wk=1/2,i-1/2 > (2.69)
i=1
and Eq. (2.18) gives
v =y, 7 (2.70)
1—1/24-1/2 = Ti—-1/24-1/2" .

Using Eq. (2.70) and adjusting the weights accordingly, we can modify the definition of the

scalar flux

+[m]
o 1/2 Z% 1/2,i-1/2Wk—1/2,i— 1/2+Z¢k T/Qz YR o1z (2.71)
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where

wlf—1/2,i_1/2 = Wg-1/24-1/2, t=1,...,k—1, (2.72)
Wi yop—1/2 = 2Wk-1/2k-1/2>

+
Wr_1/2,k—1/2 0.

First, we analyze the equations in the interior of the problem domain. The equa-
tions (2.59), evaluated at k, and (2.60), evaluated at k — 1, are summed with weights

wl:ct—l/Q,i—l/2 over 1 <i<kandl<17<k-—1, respectively

k
—[0] —[0] -
ZT]“ 1/2 Vi 1/2,i—1/2_¢k+1/2,i—1/2)wk—1/2,i—1/2 +
= . (2.73)
(1] 1 50
Z(¢k,i—1/2 Q(I)kz 1/2)wk 1/2i-172 =0,
i=1
= [0] [0]
+
i 1/2 Ve—1/2,i-1/2 ~ Yr-3/2,i— 1/2)“’12L 1/2i-1/2 T
=" - (2.74)

+[1] +1] _
Z(¢k—1,i—1/2 2(I)k 1i— 1/2) 1—:—1/2,1'—1/2 =0.
Now, substitute Eqs. (2.65) and (2.67), evaluated at k, into Eq. (2.73), and substitute Egs.

(2.66) and (2.68), evaluated at k& — 1, into Eqs. (2.74)

k

1 1 0
Zwk 1/2,i-1/2Wk—1/2,i-1/2 — 9 Z ey (¢k+1/2 Pp— 1/2)wk 1/2,i—1/2
i—1 ka—1/2 (2 75)
. )
1 1] _
) Z Dr1/oW_1/2i-172 = 05
i=1
] I~ 1 0 0
+[1 0
Z wk—1/2,i—1/2wl—:—1/2,i—1/2 ~ 35 Z _ (¢k—3/2 - ¢k—1/2)w1:r—1/2,z'—1/2
— = Th-1,i-1/2 (2.76)
1 k-1 : ’
1
) Z¢k 1/2“’1:_ 1/2,i-1/2 = 0~
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Summing Egs. (2.75) and (2.76) and introducing relationship (2.71) leads to the following

approximation of the diffusion equation in interior cells

k
1
(¢k+1/2 ¢£§l1/2> Z Fei1/2

Wi _1/2i-1/2 —
=1 71_1/2

(2.77)
o \N= 1 +
<¢k 1/2 ¢k—3/2> ; Fo—tio1/2 Wi 1/9i-172 =0
k=1, N—1.

We notice that the VMOC-LI equations do not lead to an accurate discretization of the
diffusion equation in the thick-diffusion limit.
We now consider the boundary cell to determine the asymptotic boundary condi-

tion. Equations (2.16), (2.58), (2.61), (2.63), and (2.69) give the N*" cell equation
0] | V-1
0
ON+1/2 = Zw Wim1/2)Wyo1p2 T 5 Z¢N+1/21 12 WA i 12 (2.78)

i=1

and as a result, we have the asymptotic boundary condition of VMOC-LI defined as

S (g 1/2)“’;/ i—1/2

ol 2.79
N+1/2 (1__21 1 wNz 1/2) ( )

Parabolic Interpolation

We now consider Vladimirov’s method with parabolic interpolation of the total
source. The VMOC-PI asymptotic analysis is the same as the analysis for VMOC-LI with

the following changes to Eq. (2.53)

_ Otk _
Bricije = mpkﬂ-,lﬂ = Vki-1/2 T Th—1/2,i-1/27V2,ki—1/2 5 (2.80)
Otk
ﬁ;ifi_l/g = mp&_lp = V1ki—1/2 T Tht1/2,i-1/272,ki—1/2 > (2.81)
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where

2
Vki-1/2 = 5 7 3 3 , (2.82)
' Ut,k(xk+1/2,i—l/2 - xk—l/Z,i—1/2)
2
V2,ki—1/2 = (2.83)

2 — 2 :
O-tvk(mk—i-l/zi xk—1/2,i—1/2)

Now, introducing the expansions (2.55) and weight (2.56) into Eqgs. (2.46)-(2.51) and equat-
ing the coefficients at powers of €, we note only two changes to the system of equations
defined in the VMOC-LI analysis

O(e) equations

- _ 4 [0] [0] (1]

q)k,i—l/Z = V2,k,i—1/2%Tk—1/2,i—1/2 <¢k+1/2 - ‘/’k—1/2> + ¢k—1/2 ) (2.84)
+H1 2 (0] (0] (1]

(I)k,i—l/Q = V2.k,i-1/2Tk+1/2,i-1/2 (¢k—1/2 - ¢k+1/2> + ¢k+1/2 : (2.85)

Following the same asymptotic diffusion analysis laid out by VMOC-LI, we derive the

approximation of the diffusion equation in interior cells for VMOC-PI
k
0 0 .
<¢£€J]r1/2 - ¢EC]_1/2> Z’Yz,k,z'—1/2l‘k—1/2,i—1/2wk—1/2,i—1/2 -
i=1

k-1
<¢LO]_1/2 - ¢ECO]_3/2> Z’72,1;—1,i—1/290k—1/2,i—1/2wk—1/2,i—1/2 =0,
=1

(2.86)

k=1,..,N—1.

The asymptotic boundary condition of VMOC-PI is defined in the same manner as VMOC-

LI

o P Y™ (Yim12)WNi—1/2

¢ = — (2.87)
N2 1L w1 0)

Both VMOC-LI and VMOC-PI methods yield discretized diffusion equations with-

out absorption and source terms. This implies an unphysical approximation of the diffusive
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equation. For example, using zero-flux boundary conditions would give a leading order solu-
tion of zero regardless of the value of the source term. As such, we say neither method limits
to an accurate discretized diffusion equation. Furthermore, the boundary conditions derived
in both VMOC-LI and VMOC-PI do not closely approximate those of the continuous form.

These conclusions are confirmed in the numerical results chapter of this thesis.
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Chapter 3

METHODS OF LONG

CHARACTERISTICS

In this chapter we consider a new family of vertex-based conservative long charac-
teristic methods. The objective of this 1D work is to formulate methods which are accurate
in the asymptotic thick diffusion limit and which will provide a necessary guidance for de-

veloping 2D characteristic methods for curvilinear geometries which are also well behaved.

3.1 Conservative Method of Long Characteristics

First, we formulate a conservative method of long characteristics in (z,y) variables
that is based on an idea which was proposed in [14]. We start by integrating the transport
equation along characteristics, as per section 2.1, approximate Q(r) in each spatial cell

with a cell-averaged value Qj, and then evaluate Eq. (2.10) analytically for the k" cell.
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Evaluating Eq.(2.10) at z = —x4_1/2,i—1/2, To = —Tp41/2,i—1/2, and y;_1 o yields

— o —0o ATy Qk —Th i
Ui1jpi2 = Ykgajaijee TR 4 20t,k(1 —e TRt (3.1)
Ungrziotje = V" Wicy2) (3.2)
k=N+1, ...

Evaluating Eq (210) at x = xk+1/2,i—1/27 Lo = xk—l/Q,i—l/% and yi—1/2 ylelds

+ — ot —0 R ATy - Qk T Tkii—
1/Jk+1/27i_1/2 = 1/116_1/272._1/26 Tt DTk i1/2 20,1 (1 — e ™i=1/2) (3.3)
J’_ _ —
V1212 = Vicy2i1/2 (3.4)
k=i,..,N+1,

for i=1,.,N+1,

where

Qr = % (s Pk + Qi) (3.5)

and ¢y and g are cell-average scalar flux and source

1 Tk41/2 9
b= / (r)rdr, (3.6)
Uk Tk—1/2
.3 _ .3
o = k+1/2 . he1/2 (3.7)

We now derive the definition of ¢, that leads to a conservative method [14]. Let us consider

a cell D,Jgi in (r, u) coordinates defined by lines r = r,_; s2 and r =711/ and characteristics

(curves) ry/1 — p? = r;_1/9 and 7\/1 — p? = r; 15 for 1 > 0 (see Figure 3.1). The balance

in D,"c;. is given by

[ @it - Q) ardu o, (5.5)

ki
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p=1
P
L —
e
/ - —
- r,=0 five M1z Mearo M2 \\ rN+1/z:|r?
\\
\\ - [
\§
p=-1
Figure 3.1: The characteristics in (r, ;1) coordinates.
where
I def 0 1-— /LZ 39
’17/)(7‘, :U’) Maw(ﬁ ) + r a—¢(r, :U*) + O'AT‘)T#(’I‘, :U’) ) ( )
ef 1 ! o, 1
0 Lo /_ i+ 5a(r). (3.10)

The corresponding cell C} in (z,y) coordinates is defined by characteristics (lines)
Y = Yi—1/2, Y = Yiy1/2 and arcs of the following concentric circles: 22 9y = r,%_l /2 and

224y = T13+1/2 for z > 0, i.e. ;1> 0 (see Figure 2.2). The balance in C'; cell is defined as
/C+ (L) (x,y) — Qz, y)) ydydz =0, (3.11)
ki
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where

£o(e,) S S uwy) + T (), (3.12)
Q(e,9) ™ Sou (VAT DO/ 4 ) + 50V ). (313)

As a result, the balance is given by

Yir1/2 m1&-;-1/2(?;/)
/ [ [ wute - o y))da:] ydy =0.for Cf (n>0),  (3.14)
Yi—1/2 xk—1/2(y)
Yit1/2 —$k—1/2(y)
) (L@, y) — O, y))dz | ydy = 0, for Cf (1< 0),  (3.15)
Yi—1/2 —$k+1/2(y)

where

xk—l/Z(y) =/ T]%_l/g - y2 ’ (316)

and C; is the cell defined by the same set of circles and characteristic lines as C’,j; but for
x <0 (i.e. u<0). The balance in k' spatial interval Th—1/2 <7 < Thp1/2 (see Figure 2.2)

is defined as

k k
> / (Le(x,y) — Qw,y)) ydyde + Y / | (LY(,y) = Qla.y)) ydydz =0, (3.17)
i=1 " Cri i=1 Y Cri

and hence

Yr+1/2 —xp_1/2(Y)
/ [/ ([ﬂﬁ(w,y) - Q(x,y))dx] ydy
Yi/2

—Zpq1/2(Y) (3.18)
Yk+1/2 1k+1/2(y) '
+/ / (LY(z,y) — Q(z,y))dx | ydy = 0.
Yi/2 ﬂik—1/2(y)
If we use the definition of operators, we get
Ykt1/2 —zk-1/2(¥) /9 1

/ [/ (8—¢ towp = 5(o1d + q)) dz | ydy

Y1/2 —fck+1/2(y) x (3 19)

Yk+1/2 Ik+1/2(y) 81/; 1
+/ / (—+at¢——(<ft¢+q)) da| ydy =0.
Y1/2 z Oz 2

k—1/2(¥)
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The analysis of Eq. (3.19) shows that the scalar flux averaged over k" spatial interval is

1 Yk+1/2 —xk—1/2(y) xk+1/2(y)
o= [T vadet [ v ds| vy, (320)
Yi/2

Uk —Zpy1/2(Y) Tr_1/2(Y)

and the net leakage rate in k¥ spatial interval is given by

Ty = / N (a0 y) — st 2 (9)s ) F@rr2(0)s ) — (T2 (y)s9) )y

Y1/2
(3.21)

Note that on the other hand we have

Ty, = TI%+1/2Jk+1/2 - 7”;%_1/2«]1@—1/2 . (3.22)

To derive the discrete version of the balance Eq. (3.18) consistent with the trans-
port discretization method under consideration, first we approximate the integration with

respect to y and obtain

kt1 —Ik—l/z(yi—uz)
Z / ( ) (&p(x,y) - Q(.’E,y))d(t wz7i_1/2
i=1 k+1/2\Yi-1/2 (3‘23)
kt+1 Try1/2(Yio1/2) y
|/ (Ci(ay) — Qe y))da |l , =0,
i=1 xk—1/2(yi—1/2)
where
k+1
Yk+1/2 1
[ r5aet) = 3 ful e (324)
Yi/2 i=1
We use trapezoid rule for numerical integration and get the following weights:
Yy L o 2 .
Wgi2 = Z(y3/2 —Yip), i=1, (3.25)
1 .
Wiio12 = Z(yz'2+l/2 — Y ap), i =20k,
1 :
wz,kﬂ/z = Z(yl%-i-l/Q - 92—1/2) yi=k+1,
k=1,..,N.
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In case i = k + 1 the integration is performed over measure zero, namely, interval of zero

length. This leads to no contribution in the sum from the terms with ¢ = k 4+ 1. Thus, we

have
k —wk—1/2(yi—1/2) y
>/ )~ Qe |
i=1 k+1/2\Yi—1/2 (3.26)
k mk+1/2(yi—1/2) y
>/ (L(a.y) - Qay))da| wl, |, =0,
i=1 mk—l/z(yi—1/2)
We now integrate the transport equation along characteristics
—wk—1/2(yi—1/2) _mk—1/2(yi—1/2)
/ Lp(z,y)de = / Q(x,y)dx, forpu<0, (3.27)
—mk+1/2(yi—1/2) _xlc+1/2(yi—1/2)
93k+1/2(yi—1/2) ﬂ?k+1/2(yi—1/2)
/ Lp(z,y)de = / Q(x,y)dx, for u>0. (3.28)
9%—1/2(%'—1/2) mk—1/2(yi—1/2)

It gives rise to
$k+1/2(yi—1/2)

or(Va? +yP (2, Y j2)de =

T 1/2(%‘—1/2)
1 / ! (VI ED0(Va2 T 42) +a(Va? 5 oP)) di for i< 0,

2 k—1/2(yi—1/2)

¢1;—1/2,¢—1/2 o ¢l§+1/2,¢—1/2 + /

$k—1/2(yi—1/2)

(3.29)

$k+1/2(yi—1/2)

¢lj+1/2,z‘—1/2 - ¢1Jcr—1/2,¢—1/2 + / or(Va? + y)t(x, Z/i—l/z)dw =

9%—1/2(%‘—1/2)

Tk 1/2(%‘-1/2)
1/ " (os(\/x2 +y2)o(Va2 4+ y2) + q(Va? + yz)) dxr for p>0.

2 k—1/2(yi—1/2)

(3.30)

The equations (3.1) and (3.3) can be written in the following form:

_ _ _ 1 .
wk—l/2,i—1/2_¢k+1/2,i—1/2+O_t»k¢k,i—1/2Axk,i—1/2 = §(Us,k¢k+Qk)Al’k,i—1/2v k=N, ..i,

(3.31)
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1 .
wl—c’_+1/2,i—1/2_wl—:—l/Z,i—l/2+Utvk¢Zi—1/2Axkyi—1/2 = §(Us,k¢k +Qk)Axk,i—1/2’ k=i.,N,

(3.32)
Uric1ja = Cki=1/2%ps1 /20172 T (1= Qhic1/2)V 10,5 1725 (3.33)
7’bg_ﬂ'—l/? - Cykvi_1/21'[11—6’——1/2,2'—1/2 + (1 - ak,i—1/2)¢2—+1/2’1’_1/2 ) (334)
1 e_Tk,i—l/Q
Aki—1/2 = Tei1/2 T e hisiz (3.35)
where
¢ 1 /_xk—l/z(yi—l/2)¢ ( )d ( )
= ——— (2, yi_1/9)d , 3.36
hi=1/2 Axk:i—l/z _xk+1/2(yi—1/2) Y
1 xk+1/2(yi—1/2)
U= | U (@i )da (3.37)
hi=1/2 Axk,i—1/2 Tr_1/2(Yi—1/2) /
are cell-average angular fluxes. From Egs. (3.26), (3.31), and (3.32) we get
k 1
Z {11}1;—1/2,1'—1/2 _¢E+1/2,i—1/2+Ut:k¢1;i—1/2Awk,i—1/2 - §(Us,k¢k +Qk)A$k,i—1/2]”Z,i—1/2
i=1

k
1
+ + + _
+ Z|}’Z}k+l/2,i—1/2 ~Yr_1/2,i-1/2 +Ut:k¢k,i—1/zA$k»i—1/2 9 (05,1 Pk +q’f)A$k7i—1/2]”z,i—1/2 =0.
i=1

(3.38)

Comparing reaction rates, we see that to derive a conservative method, one needs to define
k k

Pr Z Aa’k,i—l/?wz,i—uz = Z(¢l;i—1/2 + ’/’I_:,i—l/z)Amk,i—l/2wz,i—1/2 : (3.39)

i=1 i=1

Finally, the cell-average scalar flur is defined as

k
1 _
Pk = Vi Z(¢k,i—1/2 + 7/’1—:,1'—1/2)Axk,i—l/sz,i—l/z ’ (3.40)
i=1
k
Vi = Z Amk,i—l/2wz,i—1/2 . (3.41)
i=1
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The discretized net leakage rate is given by
k
o + + — —
Tk = Z(¢k+l/2,i—l/2 ~Vi_1y2i-1/2 T Vro1y2i-12 wk+1/2,i—1/2)wz,i—l/2 : (3.42)
i=1

The analysis of Eq. (3.42) in the form

k k

fo_ + - + -
Ty = Z(¢k+1/2,¢—1/2 - wk+1/2,i—1/2)wz,¢-1/2 - Z(¢k—1/2,i—1/2 - %_1/2,1-_1/2)102,1_1/2 )
i=1 i=1
(3.43)
leads to the following definition of the cell-edge currents
1 k
_ + -
Jk+1/2 T2 Z(¢k+1/2,¢—1/2 - ¢k+1/2,¢—1/2)wz,i—1/2 : (3.44)
k+1/2 =1
Note also that it is equivalent to
J1/2 = O, (345)
1 = 2
Jevig= 5T+ 1_10dk1/2), k=1,..,N. (3.46)
Tk+1/2
The balance equation in the k** interval has the following form:
T + (01 — 0s) Vi = aVi - (3.47)

Hereafter we refer to the proposed method as the conservative method of long characteristics
(CMLC) method. The CMLC method is defined by Egs. (3.31)-(3.35), (3.40), (3.41), and

(3.44).

3.1.1 The Asymptotic Diffusion Analysis of CMLC

We define a small parameter ¢, introduce scaled cross sections and source

o= -0, 0q=¢0,, q=E¢q, (3.48)
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and consider the transport problem as e — 0. Assume that the solution can be expanded

in power series of €

+ _ > m m _ = m ,[m]
wk—1/2,i—1/2 - Z wk 1/2'L 1/2> wkz 1/2 — E € ¢kz 1/2> (/’k - Z € ¢k ’
m=0

m=0

(3.49)
and introduce the expansions (3.49) into Egs. (3.31) and (3.32). We equate the coefficients

at powers of ¢. This leads to the following O(¢~1) equations

i, = %qu , (3.50)

O(1) equations
wk 1/21 1/2 101:4[-01]/2,1'—1/2 + &tA$k»i—1/2wk_,£1—]l/2 = %mAxk,i—l/?‘bLl] ) (3.51)
¢Z4[r01]/2,z'—1/2 ¢k 1/2i-1/2 T &tAﬁk,i—1/2¢l_:,£1—]1/2 = %675A$k,i—1/2¢£c1] ’ (3.52)

O(e) equations

—[1 —1 ~ —[2 1 ~ 2 ~ 1 ~
[ 1]/21 1/2 wk—i[—1]/2,i—1/2 + UtAxk,i—l/QQ/’k,E—]l/z = §A$k,i—1/2 <Ut¢l[c] - Ua‘b;c] + q> ,
(3

53)
+1 ) PN 1 N
¢k—i[-1]/2,i—1/2 wk 1/21 12 T Ot ATy 1/2%“ 12 = Ax;m-_lp (Ut"/’i[c] - aaqSL] + q) )
(3.54)
We now introduce series (3.49) into Egs. (3.33) and (3.34) to get
—[0] [0]
riz1/2 = Yr-1/2,i-1/2° (3.55)
+0] o)
k12 = Yrriy2io1/2- (3.56)
This gives rise to
0 0
Ui gimage = 50 (357)
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+[0 0
¢k4[—1]/21 12 = ¢L] (3.58)

Note that from Eq. (3.40) we have

k - V Z wkz 1/2 +¢;I£T]1/g)Amk,i—1/2wz7i_1/2. (3.59)

First, we analyze the equations in the interior of the problem domain. The equa-
tions (3.51) and (3.52) are added together and summed with weights w? i—1pover 1 <i <k

Taking into account Egs. (3.59) and (3.41), we get

k

+0] —[0] —[0] _
Z(¢k+1/z,i-1/2 djk 1/2 i12 t V12012 — Yrprjaim1/2)Whio12 =0 (3.60)
i=1

Using Egs. (3.57) and (3.58), we obtain that

k k
1 [01 [01
Z Wi, 1/2_52 Wi 1 =0. (3.61)

This leads to the following approximation of the diffusion equation in interior cells:

l\DIn—l

(o =) = (o, i) =0, k=1,.,N-1. (3.62)

We now consider the boundary cell to determine the asymptotic boundary condi-

tion. In the N'" cell, Eq. (3.60) is given by

+[0] —[0] —[0] —
Z(wN—i—l/Z i—1/2 7 ¥N-1/2,i—1/2 + ¢N—1/2,i—1/2 - wN+1/2,i—1/2)w?V,i—1/2 =0, (3.63)

=1
and hence
1o, 0 [0 (0]
5 D (ON = ON_y +ON — 2007wy = 0. (3.64)
=1

As a result, we have

Zd’z 120N i 1/2) (¢E(\)f]—1 ¢BS’]) 0, (3.65)
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where
N
F=Y w1 (3.66)
=1

Thus, the asymptotic boundary condition of CMLC is defined as

N
¢5(\)/]+1 = % Z 1/’2:711/2@”?\1,7;_1/2 . (3.67)

i=1
We notice that the CMLC method gives a discretized diffusion equation similar to
those derived in Vladimirov’s methods. The resulting equation does not have an external
source and does not depend on material cross sections. The boundary condition given in this
case resembles a discretized version of the weighted integral given in the continuous form in
section 1.3. The CMLC equations do not lead to an accurate discretization of the diffusion
equation in the thick-diffusion limit. This result is similar to one of the step characteristics
method in 1D slab geometry. These conclusions are confirmed in the numerical results

chapter of this thesis.

3.2 Linear Long Characteristic Method

In this section we formulate a linear characteristic method in (z,y) variables that
is based on ideas of a method for slab geometry. Now, approximating the total source with
a linear function and integrating Eq. (2.8) over the interval x4 1/2,_1/2 <2 < Tp_1/24-1/2

yields the balance equation for p > 0

Ut jpicaye = Viymicije OV DThim1 2 = Qi1 2B%kim1 2, (3.68)
where
Q 1 /$k+1/2,i—1/2 Q( ))d ( )
hioljg = T2 Yi-1/2))00 - 0
ATki-1/2 Jay_1ni 10
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Integrating Eq. (2.8) over the interval —41/2;_1/2 < & < —2j_1/9,_1/2 yields the balance

equation for u <0

wk_—l/z,i—l/Z - wk_+1/2,i—1/2 + ot,kwk_,i—lﬂAxkai—l/? = Qk,i—1/2A”"k,i—1/2 : (3.70)

Now, we integrate Eq. (2.8) over 2y 1/9;-1/2 <2 < Tp_1/2,—1/2 With the weight

6
~5 (@ = Tpi12), (3.711)
Axi,i—1/2 '
where
3 1
Thi—1j2 = §($k+1/2,i—1/2 + Tp_1/2:i-1/2) 5 (3.72)

to obtain the first spatial moment of the transport equation for values of u >0

+ + + + _ A
3 (¢k+1/2,i—1/2 + ¢k+1/2,i—1/2 - 2¢k,i—1/2) + Ut7k¢:,i—1/2Amk7i—1/2 - Qak:,i—l/ZAxk,i—lﬂ )

(3.73)
where
" 6 Thk4+1/2,i—1/2 B
Vit = am— | (0 Frar)bla i )de,  (3T4)
xk,i—l/Q Thk—1/2,i—1/2
A 6 Trt1/2,i—1/2 B
Qk,i_yz = Mg—/ (z — xk,¢—1/2)Q(ﬂfayi—1/2)d~’U- (3.75)

ki—1/2 YZTk—1/2,i-1/2

For pn < 0, we integrate Eq. (2.8) over —xj41/9,-1/2 < ¥ < —Zp_1/2,—1/2 With the following
weight

A2 (@ + Zpi-1/2) (3.76)
ki—1/2

and get

3 (wlc_+1/2,i—1/2 + ka_+1/2,i—1/2 - 2@&1;1—1/2) + Ut,kwlf,’z'_—l/2Axk,i—1/2 = _Qi,i—l/QAfck,i—l/? )

(3.77)

38

www.manharaa.com




where
6 “Tk4+1/2,i—1/2

T/Ji,’i__l/g = AQ—/ (T + Zpi—1/2)0 (2, Yim1/2)d . (3.78)
xk,i—1/2 —Tk—-1/2,i—-1/2

We make the following assumptions for the source terms:

Qri-1/2 = Qu,
(3.79)
leg,i—l/2 = Q-
Thus, we have the following set of discretized equations
¢1j+1/2,i—1/2 - ¢Ij—1/2,i—1/2 + Ut7k¢1:i—1/2Axk,i—1/2 = QrAZri-1/2, (3.80)
w;:_l/gﬂ'_l/g - %;_1/271-_1/2 + at,kwii_l/gAxk,i—l/Z = QkAxk,i—l/Q ) (381)

3 (wk_+1/2,i—1/2 T V12,172 2¢l;,i—1/2) + 0t7sz:i_—1/2A$k»i—1/2 = QpATgi1/2, (3.82)
3 (7/’1;+1/2,¢—1/2 + 1/’1;+1/2,i—1/2 - 27/’lc_,i—1/2) + Ut:k¢::;1/2Axk,i—l/2 = —QpAzgio1y2, (3.83)
where

Qr = %(Us,k¢k + qr)
(3.84)

1
Qi = i(as,kfbi + qg) .

To define the cell-averaged scalar flux, ¢y, we add Eq. (3.80) and Eq. (3.81) multiplied by

the weights wy ., /o> and sum over all cells

[¢;+1/2,i—1/2 U 1012t Ve 1j2i1j2 wk_—i-l/Q,i—l/Q} Wi 1t
-1

k k
Otk Z [(wzi_l/z + ¢k_,i_1/2)Axk,i—l/2i| w]z,i_l/g = (Us,k¢k + Qk:) Z A5L'k,i—1/2w]z’i_1/2 .

i=1 i=1

(3.85)
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Comparing reaction rates, we have

1 k

P = Vi Z(@Dlj,i—l/z + 1/’1;i_1/2)A@”k,z’—1/2wz7i_1/2 : (3.86)

i=1
Furthermore, we define the first spatial moment of the scalar flux, ¢7, by subtracting Eq.

(3.82) from Eq. (3.83), multiplying by the weights wzyi_l /o> and summing over all cells. As

a result we get
k
1 _
Pk = Vi § :(d’lﬁ,’;r—l/z - "/)Z:i—l/z)Awk»i—l/QwZ,i—lm‘ (3.87)
i=1

Note that the cell-edge currents are defined by Eq. (3.44). We now approximate the scalar
flux in each cell by the following linear function:

¢k+m@—ik,i—1/2)¢i s Te_1/2,i-1/2ST<Tpi1/2,5-1/2
o (z) = { : (3.88)

2 _
¢k—m(x+$k,i—1/2)¢ﬁ y Thy1/2,i—1/2ST<—T_1/25-1/2

and evaluate Eq (210) at x = _:L‘k—l/2,i—1/27 To = _xk+1/2,i—1/27 and yi—l/Z to get
¢1:—1/2,i—1/2 = ¢1;+1/2,i—1/26_Tk’i_1/2 + 201 4 (1 —e ™i=1/2)Qy 5.59)
B 1 [Tk,i—1/2 (14 e ™i-1/2) 4 e Thi-1/2 _ 1] oz,
Ot kThyi—1/2 2
where
w]:f+1/2,i—1/2 = qzbm(yi—lﬂ) ) (3'90)
k=N,..,i.
Evaluating Eq (210) at x = xk+1/2,i—1/27 Lo = xk’—l/Q,i—l/Zv and yi—1/2 y1€1dS
1
+ — ot - Az —Thki—
¢k+1/2,i—1/2 - wk—l/2,z’—1/2e R/ 204k (1 —emmmt2)Qy 1)
1 [Tk,i—l/Z (14 e ™im1/2) e Thiz1/2 _ 1] o,
Ot kThyi—1/2 2
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where

’/’;r—l/z,i—1/2 = ;—1/2,1—1/2 ) (3.92)

k=i,.,N,
for ¢1=1,...,N+1.

Hereafter we refer to the proposed method as Linear Long Characteristic method (LLCM).

The LLCM is defined by Eqs. (3.80)-(3.84), (3.89)-(3.92), (3.86), (3.87).

3.2.1 The Asymptotic Diffusion Analysis of LLCM

We define a small parameter ¢, introduce scaled cross sections and source

1, R .
o1 =01, 0u=¢0a, q=¢eq, (3.93)

and consider the transport problem as e — 0. Assume that the solution can be expanded

in power series of ¢

+[m] + +[m] w£[m]
wk 1/2,i-1/2 = ngwk 2120 Vricip = Zsm%m 1/2° k:z 12 = ng¢kz—1/2’

e} [e.e]
o= "o, op=> emop,
m=0 m=0
(3.94)
and introduce the expansions (3.94) into Eqs. (3.80)-(3.84), (3.89), (3.90). We equate the

coefficients at powers of . This leads to the following sets of equations

O(e7!) equations

Yl = = ¢[°] (3.95)
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v, = %5 ¢[°] (3.96)

O(1) equations

[0] 0 1 z[0
Vro1/2i-1/2 = ¢[ . §¢k[ I (3.97)
+[0] o , 1 a0
Vrt1y2,i-1/2 = ¢[ o §¢i[ I (3.98)
+[0 +[0] 1
%4[-1]/2,1'-1/2 wk[l/Qz 1/2 T Ot RATE ;- 1/2%, 2= 5 SO kAT 1/2¢k ; (3.99)
—[0] 1
1/’1@—1/2,1‘—1/2 ¢k+1/zz 1/2+UtkA33kz 1/21#;” 12 = O'tkAxkz 1/2¢,c ) (3.100)

1
(¢k+1/2z 1/2“‘% 1/2,i—1/2 211’1“ 1/2)+UtkA93kz 1/2¢1m 12 = _UtkAxlm 1/2¢k )

(3.101)

~[0] —[0] al 1. .
3 (wk—1/2,z’—1/2 T Vpt1y2i-1y2 21/% i— 1/2) T O kAL 12y E/2 §Ut,kA$k,i—1/2d’k[1] ,

(3.102)
O(e) equations
x 1 z[0]
. Sl el & el 3.103
k:z 1/2 ¢k ¢ Ut,kAxk,i—1/2¢k ( )
X 1 x
¢kz 12 = ¢k +5 ¢ W (3.104)

Ut,kAxk,i—l/Z

1] 1 . —2
(N 1/2,i—1/2 wk-l[-l]/2z 1/2+UtykAxk,i—1/2¢k,£—]1/2:

1

. 9 1, o, 1.
iat,kAxk,i—lﬂ(/’;g] - éaa,kAxk,i—lﬂd)L] + §QkA$k,i—1/27

(3.105)
+1] . +[2
¢k+1/2,i—1/2 % 1/21 1/2+Ut,kAmk,i—1/2¢k,£—]1/2 =

1, 2 1, 0 1.
5Ut,kA$k,i—1/2¢L] - §Ua,kAwk,i—1/2¢L] + §QkA$k,i—l/27

(3.106)
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—[1] —[1] —[1] - —z[2]  _
3 (¢~ 1/2-1/2 T Vryi2io12 — 2¢k,z’—1/2) + Ut:kA$k,i—1/2¢k,f—1/2 =

1

R 2
__Ut,kAxk,i—l/%bi[ hy

1, 1.
5 _Ua,kAxk,i—l/2¢m[0] - §quxk,i—l/27

2
(3.107)

+(1] +(2]
3 (wk+1/2,i—1/2 + wk 1/2 i—1/2 2¢k i— 1/2) + Otk Ay i 1/2¢k i—1/2

1

. 2 . .
iat,kAxk,i—1/2¢z[ I §Ja,kAxk,i—1/2¢x[0] + §Q$A$k,i—1/2-

(3.108)

First, we analyze the equations in the interior of the problem domain. The equations (3.99)

and (3.100) are added and summed with weights wz i—1/2 OVer 1 <7<k and we get

k

+[0] +10]
Z(¢k+1/2,i—1/2 - wk—1/2,i—1/2 + d’k 1/21 1/2 '/’k+1/2z 1/2)wim 12 = =0. (3.109)
i=1

Subtracting Eq. (3.101) from (3.102) and summing with weights w?

kio1/2 Over 1 <@ < k

we obtain
: (0] (0] [0] [0]
+ + - -
3 Z [¢k+1/2,i—1/2 + 1/2,i—1/2 ¢k—1/2,i—1/2 - ¢k+1/2,i—1/2
i=1

+[0] —[0] _
+ 2(¢k,z‘—1/2 - ¢k,i—1/2) Wi,i_l/z =0.
(3.110)

Substituting Eq. (3.95) and (3.96) into Eq. (3.110) yields

k
+[0] +[0] —[0] —[0] _
Z(wk+l/2,i—1/2 + Yy 1/2,i—1/2 ¢k+1/2,i—1/2 - 1[’k—1/2,i—1/2)“’5,1'—1/2 =0. (3.111)
i=1

Equations (3.109) and (3.111) lead to the following relationships

k
+[0] —[0] B
Z(wkﬂ/?,i—l/z - wk+1/2,i—1/2)wlz,i—1/2 =0, (3.112)
i=1
e [0] [0]
+ —
Z(wk—l/z,i—l/z - %_1/2,@‘_1/2)1”2,2'_1/2 =0. (3.113)
i=1
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Now, we define asymptotic cell edge scalar fluxes. Substituting Egs. (3.97) and (3.98) into

Eq. (3.112) gives
@+ ™) = 6Ly - oD,
and, substituting Egs. (3.97) and (3.98) into Eq. (3.113) gives
(@ + o) = (8 — o).

Using Eqgs. (3.114) and (3.115), we define

def T
Orr = (B + o),

def T
o1 () — o).
Furthermore, Eq. (3.116) and Eq. (3.117) yield the following relationships
o _ 1,0 0
<15[ I = §(¢Ec4]-1/2 + ¢Ec]—1/2)’
0] 1, [0 0
On = 5 (Bk1ys — D)

and using Egs. (3.97) and (3.98)

+1[0] [0] _
wk-ﬁ-l/Q’L 1/2 ¢k+1/27 k= 1, ’N — 17

0 -
¢k 1/2i-1/2 — (rbk 1/2° k=1,.,.N—1.

(3.114)

(3.115)

(3.116)

(3.117)

(3.118)

(3.119)

(3.120)

(3.121)

Now, subtracting Eq. (3.99) from Eq. (3.100) and summing with weights w} . Jo Over

1 <4<k gives

k
o, _ L 1 +[0] +[0]
ke = Otk ;Axk,i—l/Q (d}k“/“‘l/? Vk172-1/2

—[0]
d}k 1/2,i-1/2 ¢k+1/2,i—1/2> wz,i—l/z J
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where the cell-averaged current is defined by

k
(1 _ +[1]
rid _Z(¢k,i—1/2 wkz 1/2) 2,Z~_1/2- (3.123)

=1

Substituting in Eq. (3.120) and (3.121) leads to the following condition

o L /o 40 kyie1/2
redy = Gk (¢k+1/2 Ppo— UQ)ZA:C;” P (3.124)

Now, we add Egs. (3.105) and (3.106) and sum with weights w? over 1 <i<k

ki—1/2

k
—[1] +[1] +[1] - (0] 5
Z <¢k—1/2,i—1/2 ¢k+1/2 i—1/2 + ¢k—1/2,i—1/2 ¢k+1/2 i— 1/2) wz,i—1/2 T 0a kP, Vi = @ Vi -
i=1

(3.125)

Using Eq. (3.44), we get

1 1 . 0 .
T§+1/2J1[c4]r1/2 - TI?:—l/2J]£_]1/2 = —oa,kqﬁL]Vk + Vi (3.126)

Finally, we subtract Eqs. (3.107) from (3.108) and sum with weights w? . | , over 1 <i <k

1/2

k
-1 +[1] +[1]
Z 3 (_¢k+1/2,¢—1/2 % 1/2i-1/2 T %—1/2,@‘—1/2 + wk+1/2 i 1/2) wy i—1/27

= . (3.127)
1 - . 0 o
Z 2(¢Z£_]1/2 - wk,g_]l/g)wzﬂ'_l/g = _O'a,kd)i[ ]Vk + Qka 5
i=1
and using Egs. (3.44) and (3.124) we obtain
1, z[0 1.,
a1 i g TR iy — 2R = —§0a7k¢k[ Wi + StV (3.128)

Adding Eq. (3.126) evaluated at k and Eq. (3.126) evaluated at k + 1 and subtracting Eq.

(3.128) evaluated at k from Eq. (3.128) evaluated at k + 1 gives

1 1 . 0 ) . .
T;%+3/2J,[c+]3/2 - T;%_l/gJIE,]l/g = _Ua,k:+1¢£;_]|_1vk+1 - aa,mi]Vk + Gt Vipr + @ Vi, (3:129)
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1 1
rk+3/2*]1£4]r3/2 i 1/2J1£]1/2 (Tk+1J1[c+]1 TkJi[c]) =
]_ ~ x N €T 1 AL ~L
—g(Ua,k+1¢kL?]1Vk+1 - Ua,k¢k[O]Vk) + g(Qk+1Vk+1 AR
(3.130)
Equating Eqgs. (3.129) and (3.130) and substituting in Eqgs. (3.119), (3.118), and (3.124)

yields the discrete diffusion equation for the leading order solution in the interior of the

problem.

1 0] [0] k+1z 1/2 1 [0] s Wki—1/2
Gerrt <¢k+3/2 k+1/2) Z < Atgrii1 Utk(¢k+1/2 P 1/2) E—Ax +

i&a:kvk< ¢L?<]F1/2 ¢Lo] 1/2) + }l&a,kHVkH( ¢LOJ]r1/2 ‘bg:’,/z) -
SVi (@ 38) + g Viers (dker — 5
(3.131)
We see that LLCM limits to a three-point discretized version of the diffusion equation for
the leading order solution.

Now, we consider the reflecting boundary condition in cell £ = 1, where Jl[ /]2 0.

Equations (3.126) and (3.128) become

Tg/z*]e[,l/]z —Ga1®\ Vi + @A, (3.132)
1, 1.,
Pty = 2 = — 260107 Vi + ST VA (3.133)

Equating Eqgs. (3.132) and (3.133) and substituting in Eqgs. (3.118), (3.119), and (3.124)
yields the discrete diffusion equation in terms of the leading order solution for the center

boundary of the problem

Y
L o(g0 _ gy e 1, oy 1o, (. 1.
- =7 - — 2§ 134
25 1 <¢3/2 ¢1/2) Am1’1/2 40'a,1vl( ¢3/2 + ¢1/2) + 2V1 (fh 3(]1) . (3 3 )
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The outer boundary cell kK = N gives us the asymptotic boundary condition. The

cell-averaged current in the N** cell is given by

Z TR el
atN AxNz 1/2 N+1/2,i—1/2 N— 1/21 1/2

—[0] —[0]
- ¢N—1/2,i—1/2 + wN+1/2,i—1/2)w§}v,i—1/2 :

(3.135)

Substituting Eqgs. (3.120), (3.121) into Eq. (3.135), we get
N = Z (53 o + 0 Ju?
N N AacNz 12 N NHL/2i-1/2 T ENFL/2i-1/2 ) TNi-1/2

= 1 32—
[O] 1/2ZAN 2 ] == [¢E€f]+1/2 E(\Jr] 1/2] Z AN L2

TN,i—1/2 Ot N TN, i— 1/2
(3.136)
where
-1 N
qﬁ Z le 1/2 Z <¢+[O] _ o [0] >wy
N-|—1/2 ALy i1/ Aa:N 1 UUNHL/2,i-1/2 N+1/2,i-1/2 ) “Ni—1/2 "
/ i=1 /

(3.137)

Equation (3.137) leads to

o Noi—1/2 oy
N+1/2 [Z Azy,_ 1/2] Z NI 1/2< N+1/2 ""/)z 1/2>wNz 1/2° (3.138)

Thus, the asymptotic boundary condition of LLCM is defined as

2 i Nyi—1/2

40 N R VA

e/ N WNi-12 (; ! 1/2A1L‘N,i—1/z> (3.139)
Zi:l Azni_1/2

Note that the above analysis and results are similar to those of the moment-based linear

characteristic method of tubes [23].
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3.3 Explicit Slope Long Characteristic Method

In this section, we derive an explicit slope method of long characteristics (ESLC)
for 1-D spherical geometry in (z,y) variables. This method approximates the scattering
source term by means of a linear function, the slope of which is defined in terms of cell-
averaged scalar flux [20]. This ultimately reduces the number of unknowns per cell.

Let us consider the following linear approximation of the scalar flux for xy 12, 1/2 <

T < Tp_12i-1/2 (0 >0)

~

) — et — " (r— T + 3.140
Pri—1/2(x) = ¢ + Atni1)s (T —Tpi_1/2)9p ( )
Here qAS;: is the slope, defined such that
Dri1/2(Tpi1/2) = Ok s (3.141)
Brim1/2(Thy1/2,i-1/2) = Prt1/2 5 (3.142)

where the cell-edge value ¢y 1/o is determined by requiring the net current across cell

boundaries to be continuous

'r‘=’l”k+1/2+O: J r=rk+1/270 ’ (3]‘43)
where the current is approximated by Fick’s Law
1 do¢

J(r)=-— —. 3.144
(r) 3oy dr ( )

Using finite difference to discretize the slope term,

1 —¢ 1 fpgr—
B Prtij2 — Pk _ Pk+1 — Pry1/2 (3.145)
3ork  240rg 3otkt1  2Arg
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where

Arg = g1 — Tk - (3.146)

Solving for ¢/ we obtain

&P — o)

Fo ks TR 3.147
i ke + &kt ( )

k=1,.,N—1,
fk = O't,kA’I'k . (3.148)

For —azp 105172 <o < —Tp_1/2-1/2 (1 < 0), we approximate the scalar flux as

~

bri1/2(x) = o — m(ﬂv + Tpic1/2)0k (3.149)

where
Ori1/2(—Thiz1/2) = bn (3.150)
Ori—1/2(—Tp—1/2,i-1/2) = Pr—1/2 - (3.151)

As a result, we get

b = (O — dr—1)

k £k+§k—1 ) (3152)

k=2,..,N.

For the N*" cell, k = N, we follow the requirement that the net current across cell bound-
aries must be continuous

=J (3.153)

r=ryii2 Ir=ry41/2—0’

and therefore

Ldo

3ot ) dr 'T=TN41/2707

J(ryg12) = — (3.154)
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Using finite difference to discretize the slope term,

2 <Z5N+1/2 - QEN

_ 3.155
301N Ary ( )

J(rng1s2) =

The net current at the boundary is defined by means of the diffusion approximation

1 0 1
J(rn11/2) =/1W(7‘N+1/2,u)du=/1u¢(rw+1/2,u)du+/0 (TN 1172, 1)dp

: Lo 3
= Jn +/ M<§¢N+1 + EMJ(TN+1))d,U' (3.156)
0
in 1 1
=J"+ Z¢N+1/2 + EJ(TN—H):
then

. 1
J(rng12) =2J" + SN2, (3.157)
where

. O .
J" = / ™ (p)dp (3.158)
-1

By equating Eqs. (3.155) and (3.156) and utilizing Eq. (3.140), we get

3 ) _
on = “@+ 360 févgN) (4™ + ) - (3.159)

For the 1% cell, k = 1, the net current at the origin is zero, therefore

1 do
_ - =0 3.160
3oy dr ‘TZO ’ ( )
and therefore
431— =0. (3.161)
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The resulting equations of ESLC method are the following:

“Tk,i—-1/2 +

Veo1/2,-1/2 = it1/2,i-1/2¢ (1 — e ™i=12) (o kb + i)

2Ut,k
1 Thyi=1/2 —Tk,i—1/2 —Tk,i—1/2 71— x
o g A e e =1 (oud + i),
) st
(3.162)
_ _ _ 1 -
Vi_12-172 ~ Yir1/2,i-1/2 T OtkBDTki—1/2Vp ;19 = i(at,kqsk +qr), (3.163)
Unti/2ioje = Q/Jin(yi—m) , (3.164)
k=N,.. i,
+ — ot — oy Az — -
Vrr1j2io1/2 = Vho1jgim1/2€ ORIV 4 2Utk(1 — e TRim1/2) (0 1. bk + qk)
1 Thi=1/2 —Tk,i—1/2 —Tk,i—1/2 2+ x
s [ ke e~ b + D),
y 71_
(3.165)
1 _
Uit airye — Vi 1jaio1ye T OEDTR i1 pUs = 5 (O0kor + ar) (3.166)
J’_ _ —_
¢i—1/2,i—1/2 = Yi—1/2/i-1/2° (3.167)
k=i,....N,
for i=1,...N+1,
where
Lk
T - +
Pk = Vi Z(wk,i—l/Z + %,i—l/z)Axk,i—lﬂwz,i—l/z : (3.168)
i=1

ESLC is defined by Eqs. (3.147), (3.152), (3.159), (3.161), and (3.162)-(3.168).
This method generates inaccurate solutions in some unresolved boundary layer

problems at points where the material interface incurs a significant change in the scattering
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ratio

At these diffusive interfaces ESLC yields inaccurate estimates of the slope, which result
in an unphysical solution behavior in the diffusive region of the problem. In an attempt
to nullify this phenomenon, it is necessary to introduce a slope limiter [20]. Here, we set
the slope of the scalar flux to zero across those interfaces where the ratio of ¢ across the
boundary is greater than J. (see Algorithm 1). This eliminates the influence of the interface
slope term and improves the accuracy of the solution -without refinement of the spatial

grid. Note, the use of a slope limiter has no effect on problems were there is no dramatic

change in c.
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Algorithm 1: Slope Limiter.

if CC—’“ > 1 then
k+1

. Ck
if e > 6. then

| ¢z207 ¢I;+1:0

end

end

if =% <1 then

Chk+1
. C,
if % > §. then

| ¢2_=07 ¢]:+1:0

end

end
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Chapter 4

METHODS OF SHORT

CHARACTERISTICS

In this chapter, we apply the ideas behind the derivation of CMLC to short char-
acteristic methods. The primary difference being short characteristic methods require inter-
polation to determine the angular flux value at each vertex of a cell as opposed to the long
characteristic method where the characteristic spans the entire problem domain without

the use of interpolation.

4.1 Classical Method of Short Characteristics

In this section we present the classical method of short characteristics [5, 6, 7]. We

introduce a spatial grid

{Tj+1/27j =1,..,N, T1/2 = 0, 'N4+1/2 = R}7 (41)
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and angular mesh

{Nm+1/27m = 07 "'7M7 .ul/2 = _]-> /~LM—|—1/2 = ]-a M#—i—l = 0}’ (42)

(see Figure 4.1). For non-positive directions (fi,,41/2 < 0), the angular flux at (r;_1 2, fm1/2)

vertex is determined as

L a1 A
Um1/2,4-1/2 = Py g€ 7L 4 Ff(ffs,j%’ +q)(1—e oty j=N,..,1, (43)
’]

*

where y

= Y(rjy1/2: Uy ;) is the angular flux at the incoming edge of (m, j)-cell at

r=rji1/ and

" Tj-1/2
= .= — 1 — —J 1 — 2 . 44
M Mm,j \/ 7’j+1/2( p’m+1/2) ( )

The value of ¥, ; 1s obtained, for example, by linear interpolation with respect to u between
the known vertex-values of the angular flux closest to P, j (yellow vertices). The particle

track length in the cell is given by

Asm,j =Tj—1/2lm+1/2 — rj+1/2/~1/:n,j . (4.5)

For positive directions (1172 > 0) in (m’, j)-cell, we have

1

N oy As, s -

V12,412 = Y j& 7750 ’]+Ft-(%,j¢j+qj)(1—€ ThiSmli) . j=1,...,N, (4.6)
J

),

where ¢, o = ¥(rj_1/2, pt;, ;) is the angular flux at incoming edge of (m/, j)-cell at r =

Tj—1/2 and
ook S Ti2,. 0 o
M= Hp 5 = \/1 Ti 19 (1 :U*mq_l/g) : (4'7)
The track length is
Ay j = Tjp1/2Mm/+1/2 = Tj—1/2Hm j - (4.8)
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The cell-average scalar flux ¢; is determined by means of cell-edge scalar fluxes

M
Gj_172 = Z Ymy1/2,j-1/2Wm -

m=0

4.2 Formulation of a Locally Conservative Method of Short

Characteristics

In this section we formulate a locally conservative method of short characteristics
(LCMSC) based on the classical method of short characteristics presented above. Figure
4.1 shows the particle paths (tracks) inside each cell in case of (r,u) coordinates. The
interpretation of the method of short characteristics in (x,y) coordinated is presented in
Figure 4.2. Based on this viewpoint, we define the track-average value of the angular flux

in the following form:

Ymj = (1= amj)¥mi1/2j-1/2 + @mj¥p;  for fii1/2 <0, (4.9)
1 e—O’t,jASm,]‘

Am,j = Ut}jASm,j — T o-oeBomy (4.10)

U j = (1- am',j)¢m’+1/2,j+1/2 + O‘m’,jw;kn’,j for Hom/+1/2 0. (4.11)

As aresult the detailed balance equation for each track in case fi,,4.1/2 < 0 can be formulated

as follows:

. Asp, j
Uma1/2,j-1/2 — Umj + 0t ASm jVm; = 2m’J (0s,j0; + 45) - (4.12)

The value of y-coordinate for the track in (m, j) cell is given by

y:?jm,] :T]—1/2\/1_/’L?n+1/2 (413)
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In case fi,, 4172 > 0 we have

JAN:
Vo g1/2,j41/2 = Umr j + Ot j A8y jtbms j = ;n L (os,i0; + q5), (4.14)

Timtj = Tjr1j2n] L= B gy o - (4.15)

To define the cell-average scalar flux, we formulate the balance equation in the jth spatial

interval similar to Eq. (3.17) and integrate numerically the track-average angular fluxes
with respect to y in each cell that belongs to the jth spatial interval (see Figure 4.2). As a

result, we have

M—-1

1< . M i
¢ =y D Vi Asm @l Y Y A i, | (4.16)
J | m=0 m’=M2_1+2
1 M2—1 M
V=35 D Aspgih+ Y Aspgih, | (4.17)
where u";fm ; are corresponding quadrature weights
- 1 . -
wg,j - Zl( %,j _yg,j)’ (4.18)
. 1, . M-1 M-1
w'lZ{n,] = Z(ygn—l—l,j _y'an—l,j)a m = 17"'7 2 ) 2 +2a"'aM_17
- 1 _ -
Wy = Whry = Tr-ry)- (4.19)
Note that As%ﬂ’j =0.
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(m') cell

p= r
ri,=0 T2 T+112 Mue12=R

Hm+1/2

(mj) cell
Ktz

l'L1/2=‘1

Figure 4.1: The method of short characteristics in (r, ) coordinates.

y
u=0

n
m#1/2 L

K12
Moz

m',j)-cell
(m,j)-c

Hip=-1

He12=1

X
RV

Figure 4.2: The method of short characteristics in (x,y) coordinates.

y
H=0
Hne1r2 Mooz
Ko
" M
Kyp=-1 l'LM:1/2=1
X
fiaz T

Figure 4.3: Tracks of characteristics for calculating the cell-average scalar flux in LCMSC.
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Figure 4.3 demonstrates the resulting set of tracks that are used by LCMSC in the
jth spatial interval to calculate the angular fluxes in vertices and as a result track-average
angular fluxes which then defines the way the spatially averaged scalar flux is computed.
We notice that the sets of tracks for p < 0 and g > 0 are not symmetric having different

track lengths and value of y-coordinates, namely

Asm/’j 7'é ASmJ‘ y gm’,j 75 ij,j for Mm’+1/2 = \,um+1/2] . (420)

This leads, for example, to the fact that the quadratures weights for scalar flux
calculation are different for positive and negative directions. It is possible to reformulate

the proposed method to get desired symmetry.

4.3 Formulation of a Symmetrized Locally Conservative Method

of Short Characteristics

In this section we propose a symmetrized locally conservative method of short
characteristics (SLCMSC) based on the conservative method of short characteristics pre-
sented above. The formulation of SLCMSC for the non-positive directions (ft, 1 2 < 0) is
identical to one of LCMSC. Hence, we consider a characteristic that passes through the ver-
tex (7j_1/2, lm+1/2, ), where the unknown angular flux, (¥, 41/2,j—1/2), is to be determined
(see Figures 4.4 and 4.5). Then, one needs to calculate the value of ¢y, . = ¥(rj 12, iy, ;)
at the location where the given characteristics intersect with the cell face at r = r;1/s.

Thus, SLCMSC performs “upstream” interpolation for fi,,,1/2 < 0.

29

www.manaraa.com



(m'j) cell

r
n=0 ——
r12=0 T2 Mis172 Iye1p=R

p’mM/Z

(m.j) cell
M2

Hypp=-1

Figure 4.4: The symmetrized locally conservative method of short characteristics in (r, u)
coordinates.

Hyp=-1

Gz T2

Figure 4.5: The symmetrized locally conservative method of short characteristics in (z,y)
coordinates.

u
m1/2 M2

l’Lm-‘1/2
l'Lm'+1/2

Hyp=-1 Hie12=1

X
fia2 Tz

Figure 4.6: Tracks of characteristics for calculating the cell-average scalar flux in SLCMSC.
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In case fiy, 4172 > 0, the proposed method uses ”downstream” interpolations. We
use only characteristics that originate at upstream vertices (r;_1 /2, fm/—1/2,), Where the

solution is known. First, the transport equation is solved along each of these characteristics:

o Aspy i
Yoy i — Y —1j2,5-172 + 01, i Ay i j = %(Us,jgbj +qj), (4.21)
Y j = (1= o )y i + Qs j0n—1/2.5-1/2 5 (4.22)

Y g =Tj-1/24/1 = u72n’—1/2' (4.23)

to determine 1/121,, ; ata position where the given characteristic intersects the downstream
face at © = 1;,1/5 (see Figures 4.4 and 4.5). Then, these values of angular fluxes are used
to calculate the angular fluxes at location of downstream vertices.

The cell-average scalar flux is defined as follows

1 ~ -
6 = — Z Y, Asm 04, + Z Ut j A8 08, | (4.24)
J m:pu<0 m/: >0
1 - -
Gl S Assity b S Angit,| (129
m:pu<0 m’:u>0
where 111%7 ; are corresponding quadrature weights for integration over y defined by @, ;.

Note that the discretized net leakage rate is given by

T; = Z (mi1/2.5-1/2 = Y)W j + Z (Y j — ¢m'—1/2,j—1/2)w3n/,j . (4.26)

m:pu<0 m’:u>0
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4.4 Asymptotic Diffusion Analysis of SLCMSC

The asymptotic diffusion analysis of SLCMSC in the interior of an optically thick

diffusion domain shows that the leading-order solution satisfies the following equations:

0[0] ~
Z (¢m+1/2,1 1/2 ,j + Z m/ 1/2"] 1/2) y 7j - 0~ (427)
m:pu<0 m/ >0
0 0
¢£n]—|—1/2,_7 1/2 — 2‘?5;'] ;o o m: p<0, (4.28)
0 1 0
¢7[71]’—1/2,j+1/2 = §¢£‘] m': p<O0. (4.29)

Hence the leading-order scalar flux of SLCMSC satisfies the following equation in interior

cells:
(@ =l ) — (6 ey =0, j=1,.,N-1. (4.30)

The SLCMSC asymptotic boundary condition is defined as

‘bE\O/]H Z P fm, N ) D m N> Z me (4.31)

m n<0 m:p<0
The results of analysis of SLCMSC are similar to those of CMLC in that the total source
term does not influence the leading order solution in the thick diffusive limit and therefore

does not limit to an accurate discretization of the diffusion equation.
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Chapter 5

NUMERICAL RESULTS

5.1 Reed’s Test

Problem 1. We present the results of the 1-D spherical geometry version of Reed’s
test problem [9]. First developed to illustrate the weaknesses of the diamond difference
scheme, this test consists of multiple spatial regions with varying material characteristics
that help determine a method’s general performance and implementation. Reed’s test does
not address diffusive regions where spatial intervals have a large optical thickness. The
definition of this test is shown in Table 5.1. Reed’s test for 1-D spherical geometry, like the
slab geometry version, is comprised of 40 equally spaced spatial intervals with the angular
meshes for LCMSC and SLCMSC having 8 equal intervals. In this and other tests, we
use linear interpolation in LCMSC and SLCMSC. Figure 5.1 shows cell-average scalar flux
versus position for CMLC, LLCM, ESLC, LCSCM, and SLCMSC methods, cell-edge scalar

fluxes for VMOC-LI and VMOC-PI, as well as the reference solution generated using CMLC
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Table 5.1: Test Problem 1

Region | Spatial Interval | o; | o5 q
1 0<r<?2 50| 0 | 50
2 2<r<3 5 0 0
3 3<r<b 0 0 0
4 5<r<6 110907
5 6<r<8 1109 0

on a very fine mesh with 1600 intervals.

These results demonstrate that most of the considered methods perform reasonably

well for this heterogeneous problem. However, we note that LCMSC underestimates the

solution in the domains influenced by the external source in non-optically thick scattering

regions. A possible reason for such behavior could be the quality of numerical integration

of the angular flux with respect to y based on a non-symmetric grid to generate the scalar

flux. It is also possible that the resulting y-grid in case of LCMSC is not fine enough for

positive directions.

20 9| ——vmoc-Ll
——— VMOC-PI
——CMLC

——sLcMsc

1.5

reference solution

1.0 -

0.5 4

0.0 4
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5.2 A Diffusion Test

Problem 2. We consider a sphere (R = 11) with two regions [15]. The central
region with a source (Region 1) is surrounded by an optically thick, pure scattering region
(Region 2). The cross sections for each subregion are given in Table 5.2. The boundary
condition is vacuum. The spatial mesh is uniform and has 20 cells. The angular mesh for
LCMSC and SLCMSC is the same as in Problem 1. The reference solution in Region 1 is

constant and

o(r)y=—=1. (5.1)
In the interior of Region 2, the transport solution is close to the solution of the diffusion
equation with corresponding Dirichlet boundary conditions at r=10 and r=20 that has a

form dependent on the numerical solution, ¢(10):

1 1

¢(r) = 200(10)(~ — 55) - (5.2)

Table 5.2: Test Problem 2

Region | Spatial Interval | o, | o5 | q

1 0<r<10 100 | 90 | 10
2 10 <r <20 100 | 100 | O

The results are presented in Figures 5.2-5.13. We note that the numerical solutions
of VMOC-LI and VMOC-PI have wrong shapes in Region 2. The VMOC-PI method
generates the solution that has wrong sign of the second derivative of the solution and
as a result it is convex (see Figures 5.3 and 5.4 ). Figures 5.5, 5.6, 5.7, 5.8, and 5.13 show
solutions of CMLC, LLCM, ESLC, LCMSC, and SLCMSC and corresponding diffusion

solutions. These methods generate numerical solutions with correct shape.
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Figure 5.2: Problem 2. The scalar flux.
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Figure 5.3: Problem 2. The cell-edge scalar flux for VMOC-LI.
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Figure 5.4: Problem 2. The cell-edge scalar flux for VMOC-PI.
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Figure 5.5: Problem 2. The cell-average scalar flux for CMLC.
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Figure 5.6: Problem 2. The cell-average scalar flux for LCMSC.
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Figure 5.7: Problem 2. The cell-average scalar flux for SLCMSC.
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Figure 5.8: Problem 2. The cell-average scalar flux for LLCM.
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Figure 5.9: Problem 2. The cell-average scalar flux for ESLC.
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5.3 A Test with an Unresolved Boundary Layer in a Diffusive
Region

Problem 3. This problem is designed to test a method’s ability to accurately
reproduce the interior solution of a diffusive problem with an unresolved boundary layer.
Due to the nature of radiative transfer problems, many of them are optically thick with
cross sections around 10® making it impractical to refine the spatial grid for the purpose of
resolving the diffusive boundary layer. The boundary conditions derived in an asymptotic
analysis correspond to a method’s ability to accurately reproduce this solution. We consider
a source-free sphere (R = 11) with two regions (See Table 5.3): (i) pure scattering, central
subregion (Region 1) with 0,=0s=100, (ii) pure absorbing subregion (Region 2) with o;=2
[15]. There is an isotropic incident angular flux ¥(r = 11,4 < 0)=1 on the boundary.
A spatial mesh has 10 uniform cells in each region. The angular mesh for LCMSC and

SLCMSC is the same as in Problem 1. The results are presented in Figures 5.10 - 5.15.

Table 5.3: Test Problem 3

Region | Spatial Interval | o; | o5 | q

1 0<r<10 100 | 100
2 10<r<11 2 0 10

e}

Table 5.4: Test Problem 4

Region | Spatial Interval | o; | o5 | q

1 0<r<10 100 | 100 | O
2 10<r <11 4 0 |0
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There exists an unresolved boundary layer at the interface between the two sub-
regions (r=10). The flux incident on the sphere (at r=11) is attenuated in the outer pure
absorbing region to create an anisotropic angular flux coming into the central diffusion

region (at r=10). This incoming angular flux has the following form:

$(10, 1) = e~ (OHVIFTICI=E) -y, < g, (53)

where o, = 01 — 0s.

The transport solution in the central domain asymptotically approaches the value
of the scalar flux resulted from the asymptotic diffusion boundary condition at r=10 formed
by the anisotropic angular flux (Eq.(5.3)) entering from the pure absorbing subregion. An-
alytic calculations show that the exact value is 0.14674. The results for VMOC-LI and
VMOC-PI asymptotic analysis showed that these methods would perform poorly in the
thick diffusion limit with the same predicted value (0.073831). Note the boundary condi-
tion was determined to be the same for both cases. This result is confirmed by the numerical
values (Figure 5.10) of 0.073840 and 0.073844 for VMOC-LI and VMOC-PI, respectively.
The solution of each case has relative error of 50%.

Now, we consider the new long and short characteristic methods developed in
this thesis. The asymptotic analysis predicted that CMLC and SLCMSC give 0.14634 and
0.13809, correspondingly. The obtained numerical results of CMLC (0.14634) (Figure 5.11)
and SLCMSC (0.13809) (Figure 5.12) confirm the theoretical prediction (Egs. (3.62) and
(3.67)) of the asymptotic analysis. Note that in this test the relative error of CMLC in the
diffusion region is very small. It is about 0.27%. In the given problem CMLC generates

the boundary condition with rather small relative error. In an equivalent 1D slab geometry
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problem, the step characteristic (SC) method produces the solution with the relative error
about 10%. These results enable us to see a distinction in performance between this SC-like
method in spherical geometry and SC method in slab geometry. Note that the asymptotic
boundary conditions of these two methods differ by the way the numerical integration is
carried out and by the underlying phase-space grid. The relative error of SLCMSC solution
is 5.9%. This shows the effect of differences between SLCMSC and CMLC in phase space
grids and space-angle discretization as well as interpolation involved in SLCMSC. Let us
modify this problem by increasing the absorption (o, = 4) in Region 2 (see Table 5.4). In
this case, the analytic solution of the diffusion problem with asymptotic boundary condition
in Region 1 has the value of 0.013989. Figure 5.15 demonstrates the CMLC solution of this
problem. The relative error is now about 3.5%.

For the LCMSC case, the numerical results of 0.13471 (figure 5.12) show how the
behavior for this diffusive problem differs for downstream versus upstream interpolation for
1> 0 with a relative difference of 2% between SLCMSC and LCMSC. The relative error of
the LCMSC solution is 8.2%.

Lastly, the ESLC method was not analyzed but was implemented and the numeri-
cal results are shown in Figures 5.13 and 5.14, ESLC and ESLC-SL. It was mentioned that
ESLC fails to reproduce an accurate solution for some unresolved boundary layer problems.
The numerical results for ESLC (4.2113) show this loss of accuracy. With the addition of a
slope limiter, the numerical results for ESLC-SL (0.14581) showed a significant increase in

accuracy with a relative error of 0.63% to the exact value.
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Figure 5.10: Problem 3. The cell-edge scalar flux for VMOC-LI and VMOC-PI.
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Figure 5.11: Problem 3. The cell-average scalar flux for CMLC.
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Figure 5.12: Problem 3. The cell-average scalar flux for LCMSC and SLCMSC.
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Figure 5.13: Problem 3. The cell-average scalar flux for ESLC without slope limiter.
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Figure 5.14: Problem 3. The cell-average scalar flux for ESLC with slope limiter.
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Figure 5.15: Problem 4. The cell-average scalar flux for CMLC.
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5.4 Diffusion Limit Tests

Problem 5. We consider a homogeneous sphere (R = 10) with oy = %,

Oq = €,
and ¢ = ¢ [18]. Boundary condition is vacuum. A spatial mesh consists of 10 uniform
intervals. Figures 5.16, 5.17, 5.18, 5.19, and 5.20 present the scalar flux versus position
calculated by CMLC, LCMSC, SLCMSC, LLCM, and ESLC. As the value of ¢ in these
tests decreases, the problem becomes more and more diffusive. The obtained amplitude
of numerical solutions for CMLC, LCMSC, and SLCMSC decreases as € decreases. This
fact confirms the results of theoretical analysis of the methods under study. They do not
lead to a good approximation of the diffusion equation in the asymptotic diffusion limit.

Conversely, if we consider LLCM and ESLC, the numerical solutions demonstrate that the

discretized transport solution limits to the discretized diffusion solution as & decreases.

1.2
epsilon = 10"
epsilon =107
10 epsilon =10°
’ epsilon =10
epsilon =10°
0.8 4
¢ 0.6 H
0.4
024
wot+—-—

Figure 5.16: Problem 5. The cell-average scalar flux for CMLC.
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Figure 5.17: Problem 5. The cell-average scalar flux for LCMSC.

1.2
epsilon = 10™
epsilon =107
epsilon =107
1.0 - pston =4
—\\\\ epsilon =10
—
0.8
¢ 0.6 H
—_—
—
—
0.4 \\
0.2 4 \
— 1 |
0.0 T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10

Figure 5.18: Problem 5. The cell-average scalar flux for SLCMSC.
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Figure 5.19: Problem 5. The cell-average scalar flux for LLCM.
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Figure 5.20: Problem 5. The cell-average scalar flux for ESLC.
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Chapter 6

CONCLUSION

The goal of this research is to develop a family of characteristic methods for trans-
port problems in 1-D spherical geometry that produce accurate solutions in the asymptotic
diffusion limit. The primary motivations behind this work are science and engineering ap-
plications that require radiative transfer solutions for problems that have optically thick
and diffusive regions. The transport methods developed in this paper are vertex-based
methods of characteristics. The two variants of VMOC, linear and parabolic interpolation
of the total source term, were analyzed for their performance in the thick diffusion limit.
The analysis showed that neither of these methods limit to an accurate discretization of the
diffusion equation nor did they generate the appropriate boundary conditions. Numerical
results of problems were presented and confirm that VMOC have an unphysical behavior
for problems with diffusive regions.

We have derived the conservative versions of vertex-based method of characteris-

tics, based on ideas posed in [14], for long and short characteristics along with a Long Linear
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Characteristic method and the Explicit Slope Long Characteristic method. The asymptotic
analysis for CMLC, SLCMLC, and LLCM was performed. Numerical results confirmed the
analysis for CMLC and SLCMLC. For the LLCM case, our results show that this method
does limit to a discretized version of the diffusion equation. We have yet to confirm the
boundary condition and therefore did not present results for the unresolved boundary layer
test. Lastly, ESLC was not analyzed but gave numerical results similar to those found in
the slab geometry counterpart [20]. We found that ESLC generates a solution that is ac-
curate for diffusive problems without unresolved boundary layers. For problems that exibit
large changes in the scattering ratio across material interfaces, a slope limiter is needed to
improve the performance of ESLC.

Future work will involve finishing the asymptotic analysis of ESLC and completing
the numerical results for LLCM. This will allow for continued development of advanced

conservative methods of characteristics with better properties for 1D cylindrical and 2D

curvilinear geometries.
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